Journal of Organometallic Chemistry, 253 (1983) C47-C49
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

DIVERSE REHAVIOUR OF IMIDOYL BRIDGES TOWARDS NEUTRAL NUCLEOPHILES: BRIDGE CLEAVAGE, ISONITRILE ELIMINATION, AND FORMATION OF ZWITTERIONIC PALLADIUM COMPLEXES. X-RAY

RAFAEL USON*, JUAN FORNIES, PABLO ESPINET, ELENA LALINDE
Departamento de Quimica Inorgánica, Universidad de Zaragoza, Zaragoza (Spain)
PETER G. JONES and GEORGE M. SHELDRICK
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, D-3400 Göttingen (Fed. Rep. of Germany)
(Received May 23rd, 1983)

Summary

Dimeric pentafluoro- N -methylbenzimidoyl-bridged palladium(II) derivatives react with isonitriles to give monomeric, terminal imidoyl complexes, whereas PPh_{3} causes elimination of methyl isonitrile from the imidoyl group; reaction of $\left[\left\{\mathrm{Pd}_{2}(\mu-\mathrm{Cl})_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right\}_{n}\right]$ with $\mathrm{N}-\mathrm{N}$-chelate ligands affords zwitterionic dimeric complexes, $\left[(\mathrm{N}-\mathrm{N}) \mathrm{Pd}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2} \overline{\mathrm{P}} \mathrm{DCl}_{2}\right]$ (confirmed by X-ray crystallography).

We recently reported [1] the preparation of $c i s-\left[\left\{\mathrm{Pd}_{2}(\mu-\mathrm{Cl})_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2}\right\}_{n}\right]$ (1), which reacts with monodentate ligands ($\mathrm{Pd} / \mathrm{L} 1 / 1$) to give dimeric complexes [$\left.\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2} \mathrm{Cl}_{2} \mathrm{~L}_{2}\right]$ (2); thus only the chloro-bridge of 1 is cleaved. Dimeric imidoyl complexes of palladium(II) similar to 2 have been assigned terminal imidoyl, chloro-bridged structures $\left[\mathrm{Pd}_{2}(\mu-\mathrm{X})_{2}\left\{\mathrm{C}\left(\mathrm{R}^{\prime}\right)=\mathrm{NR}\right\}_{2} \mathrm{~L}_{2}\right](\mathrm{X}=\mathrm{Hal})$, and some have been reported to react with $\mathrm{L}\left(=\mathrm{CNR}^{\prime \prime}\right.$ or $\mathrm{PR}^{\prime \prime \prime}{ }_{3}$) to give mononuclear complexes $\left[\operatorname{Pd}\left\{C\left(R^{\prime}\right)=N R\right\} \mathrm{XL}_{2}\right.$] [2]. We observe three types of reaction of 1 and 2 with $\mathrm{CNMe}, \mathrm{PPh}_{3}$ and bidentate ligands (all of which are potential cleaving agents for the imidoyl bridge).
(i) $\left[\mathrm{Pd}_{2}\left[\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2} \mathrm{Cl}_{2}(\mathrm{CNMe})_{2}\right]$ with excess of CNMe gives colourless crystals of $\left[\operatorname{Pd}\left\{\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\} \mathrm{Cl}(\mathrm{CNMe})_{2}\right]$ (3), characterized by microanalysis, molecular weight (isopiestic method in $\mathrm{CHCl}_{3}, 446$) and NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) shows two resonances, at $\delta 3.44(\mathrm{~s}, 6 \mathrm{H})$, and 3.74 ($\mathrm{s}, 3 \mathrm{H}$) as expected for mutually trans-CNMe groups. The ${ }^{19} \mathrm{~F}$ NMR spectrum is typical of an $\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ spin system, i.e. the two ortho-F are iso-

(1)

(4)
(4a: $N-N=$ bipy
4B: $N-N=$ tmen)

SCHEME 1, (i) $\mathrm{L}=\mathrm{CNMe},+\mathrm{CNMe} ;$ (ii) $\mathrm{L}=\mathrm{PPh}_{3},+\mathrm{PPh}_{3}$; (iii) $+\mathrm{N}-\mathrm{N}=\mathbf{2 , 2} \mathbf{2}^{\prime}$-bipy, tmen).
chronous and so are the two meta-F, in contrast to the inequivalence observed in our imidoyl-bridged complexes; this indicates free rotation of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, sterically allowed only if the imidoyl group adopts an anti configuration.
(ii) Reaction of $\left[\mathrm{Pd}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)=\mathrm{NMe}\right\}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with an excess of PPh_{3} in benzene is very slow at room temperature although the odour of CNMe can be detected; it becomes stronger on refluxing and 52% of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ can be isolated after 18 h . Whereas decarbonylation reactions of acylpalladium derivatives are well established this isonitrile elimination is unprecedented in palladium chemistry.
(iii) Treatment of 1 with $2,2^{\prime}$-bipyridyl in acetone ($\mathrm{Pd} /$ bipy $1 / 1$) produces a yellow precipitate (4a) for which microanalysis shows Pd/bipy 2/1. An analogous reaction with $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine affords a more soluble, non-conducting complex (4b). The X-ray analysis showed that $4 b$ is formally z witterionic (Fig. 1); thus the imidoyl bridging system has been preserved throughout the reaction.

Crystal data: $4 \mathrm{~b}, \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{~F}_{10} \mathrm{Pd}_{2}, M_{r}=844.15$. Orange crystals were obtained from acetonitrile/ethanol. Orthorhombic, Pbca, a 12.849(2), b 32.430(8), $c 13.479(2) \AA, U 5617 \AA^{3}, Z=8, D_{\mathbf{x}} 2.00 \mathrm{~g} \mathrm{~cm}^{-3}, F(000) 3184, \lambda\left(\mathrm{Mo}-K_{\alpha}\right)$ $0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 1.5 \mathrm{~mm}^{-1} .3568$ absorption-corrected reflections $>4 \sigma(F)$; final $R 0.047, R_{\mathrm{w}} 0.042$; non-H atoms anisotropic, isotropic H atoms included in refinement using a riding model. The structure (with selected bond lengths) is shown in Fig. 1*.

[^0]

Fig. 1. The molecular structure of 4b. Selected bond lengths: $\mathrm{Pd}(1)-\mathrm{Cl}(1), 2.376(2) ; \mathrm{Pd}(1)-\mathrm{Cl}(2), 2.319(4$ $\mathrm{Pd}(1)-\mathrm{C}(1), 1.960(5) ; \mathrm{Pd}(2)-\mathrm{C}(3), 1.994(6) ; \mathrm{Pd}(1)-\mathrm{N}(2), 2.028(4) ; \mathrm{Pd}(2)-\mathrm{N}(1), 2.029(4) ; \operatorname{Pd}(2)-\mathrm{N}(31)$, 2.104(5); $\operatorname{Pd}(2)-N(32), 2.137(5) ; C(1)-N(1), 1.285(7) ; C(3)-N(2), 1.273(7)$.

References

1 R. Usón, J. Forniés, P. Espinet, E. Lalinde, P.G. Jones and G.M. Sheldrick. J. Chem. Soc., Dalton Trans (1982) 2389.

2 S. Otsuka, A. Nakamura and T. Yoshida, J. Am. Chem. Soc., 91 (1969) 7196; T. Kajimoto, H. Takahas] and J. Tsuji, J. Organomet. Chem., 23 (1970) 275; T. Boschi and B. Crociani, Inorg. Chim. Acta, 5 (19: 477; B. Crociani, T. Boschi and M. Nicolini, J. Organomet. Chem.. 33 (1971) C81; B. Crociani, M. Nicolini and R.L. Richards, ibid., 104 (1976) 259.

[^0]: *The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW (Great Britain). Any request should be accompanied by a full literature citation for this communication.

